在开发测试环境中,我们一般搭建Redis的单实例来应对开发测试需求,但是在生产环境,如果对可用性、可靠性要求较高,则需要引入Redis的集群方案。虽然现在各大云平台有提供缓存服务可以直接使用,但了解一下其背后的实现与原理总还是有些必要(比如面试), 本文就一起来学习一下Redis的几种集群方案。
Redis支持三种集群方案
- 主从复制模式
- Sentinel(哨兵)模式
- Cluster模式
主从复制模式
1. 基本原理
主从复制模式中包含一个主数据库实例(master)与一个或多个从数据库实例(slave),如下图
客户端可对主数据库进行读写操作,对从数据库进行读操作,主数据库写入的数据会实时自动同步给从数据库。
具体工作机制为:
- slave启动后,向master发送SYNC命令,master接收到SYNC命令后通过bgsave保存快照(即上文所介绍的RDB持久化),并使用缓冲区记录保存快照这段时间内执行的写命令
- master将保存的快照文件发送给slave,并继续记录执行的写命令
- slave接收到快照文件后,加载快照文件,载入数据
- master快照发送完后开始向slave发送缓冲区的写命令,slave接收命令并执行,完成复制初始化
- 此后master每次执行一个写命令都会同步发送给slave,保持master与slave之间数据的一致性
2. 部署示例
本示例基于Redis 5.0.3版。
redis.conf的主要配置

哨兵顾名思义,就是来为Redis集群站哨的,一旦发现问题能做出相应的应对处理。其功能包括
- 监控master、slave是否正常运行
- 当master出现故障时,能自动将一个slave转换为master(大哥挂了,选一个小弟上位)
- 多个哨兵可以监控同一个Redis,哨兵之间也会自动监控
哨兵模式的具体工作机制:
在配置文件中通过 sentinel monitor <master-name> <ip> <redis-port> <quorum>
来定位master的IP、端口,一个哨兵可以监控多个master数据库,只需要提供多个该配置项即可。哨兵启动后,会与要监控的master建立两条连接:
- 一条连接用来订阅master的
_sentinel_:hello
频道与获取其他监控该master的哨兵节点信息 - 另一条连接定期向master发送INFO等命令获取master本身的信息
与master建立连接后,哨兵会执行三个操作:
- 定期(一般10s一次,当master被标记为主观下线时,改为1s一次)向master和slave发送INFO命令
- 定期向master和slave的
_sentinel_:hello
频道发送自己的信息 - 定期(1s一次)向master、slave和其他哨兵发送PING命令
发送INFO命令可以获取当前数据库的相关信息从而实现新节点的自动发现。所以说哨兵只需要配置master数据库信息就可以自动发现其slave信息。获取到slave信息后,哨兵也会与slave建立两条连接执行监控。通过INFO命令,哨兵可以获取主从数据库的最新信息,并进行相应的操作,比如角色变更等。
接下来哨兵向主从数据库的_sentinel_:hello频道发送信息与同样监控这些数据库的哨兵共享自己的信息,发送内容为哨兵的ip端口、运行id、配置版本、master名字、master的ip端口还有master的配置版本。这些信息有以下用处:
- 其他哨兵可以通过该信息判断发送者是否是新发现的哨兵,如果是的话会创建一个到该哨兵的连接用于发送PING命令。
- 其他哨兵通过该信息可以判断master的版本,如果该版本高于直接记录的版本,将会更新
- 当实现了自动发现slave和其他哨兵节点后,哨兵就可以通过定期发送PING命令定时监控这些数据库和节点有没有停止服务。
如果被PING的数据库或者节点超时(通过 sentinel down-after-milliseconds master-name milliseconds
配置)未回复,哨兵认为其主观下线(sdown,s就是Subjectively —— 主观地)。如果下线的是master,哨兵会向其它哨兵发送命令询问它们是否也认为该master主观下线,如果达到一定数目(即配置文件中的quorum)投票,哨兵会认为该master已经客观下线(odown,o就是Objectively —— 客观地),并选举领头的哨兵节点对主从系统发起故障恢复。若没有足够的sentinel进程同意master下线,master的客观下线状态会被移除,若master重新向sentinel进程发送的PING命令返回有效回复,master的主观下线状态就会被移除
哨兵认为master客观下线后,故障恢复的操作需要由选举的领头哨兵来执行,选举采用Raft算法:
- 发现master下线的哨兵节点(我们称他为A)向每个哨兵发送命令,要求对方选自己为领头哨兵
- 如果目标哨兵节点没有选过其他人,则会同意选举A为领头哨兵
- 如果有超过一半的哨兵同意选举A为领头,则A当选
- 如果有多个哨兵节点同时参选领头,此时有可能存在一轮投票无竞选者胜出,此时每个参选的节点等待一个随机时间后再次发起参选请求,进行下一轮投票竞选,直至选举出领头哨兵
选出领头哨兵后,领头者开始对系统进行故障恢复,从出现故障的master的从数据库中挑选一个来当选新的master,选择规则如下:
- 所有在线的slave中选择优先级最高的,优先级可以通过slave-priority配置
- 如果有多个最高优先级的slave,则选取复制偏移量最大(即复制越完整)的当选
- 如果以上条件都一样,选取id最小的slave
挑选出需要继任的slave后,领头哨兵向该数据库发送命令使其升格为master,然后再向其他slave发送命令接受新的master,最后更新数据。将已经停止的旧的master更新为新的master的从数据库,使其恢复服务后以slave的身份继续运行。
2. 部署演示
本示例基于Redis 5.0.3版。
哨兵模式基于前文的主从复制模式。哨兵的配置文件为sentinel.conf,在文件中添加

我们来模拟master挂掉的场景,执行 kill -9 3017
将master进程干掉,进入slave中执行 info replication
查看,

Cluster采用无中心结构,它的特点如下:
- 所有的redis节点彼此互联(PING-PONG机制),内部使用二进制协议优化传输速度和带宽
- 节点的fail是通过集群中超过半数的节点检测失效时才生效
- 客户端与redis节点直连,不需要中间代理层.客户端不需要连接集群所有节点,连接集群中任何一个可用节点即可
Cluster模式的具体工作机制:
- 在Redis的每个节点上,都有一个插槽(slot),取值范围为0-16383
- 当我们存取key的时候,Redis会根据CRC16的算法得出一个结果,然后把结果对16384求余数,这样每个key都会对应一个编号在0-16383之间的哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作
- 为了保证高可用,Cluster模式也引入主从复制模式,一个主节点对应一个或者多个从节点,当主节点宕机的时候,就会启用从节点
- 当其它主节点ping一个主节点A时,如果半数以上的主节点与A通信超时,那么认为主节点A宕机了。如果主节点A和它的从节点都宕机了,那么该集群就无法再提供服务了
Cluster模式集群节点最小配置6个节点(3主3从,因为需要半数以上),其中主节点提供读写操作,从节点作为备用节点,不提供请求,只作为故障转移使用。
2. 部署演示
本示例基于Redis 5.0.3版。
Cluster模式的部署比较简单,首先在redis.conf中

可以看到 7100, 7200, 7300 作为3个主节点,分配的slot分别为 0-5460, 5461-10922, 10923-16383, 7600作为7100的slave, 7500作为7300的slave,7400作为7200的slave。
我们连接7100设置一个值
https://blog.csdn.net/q649381130/article/details/79931791https://www.cnblogs.com/51life/p/10233340.html
https://www.cnblogs.com/chensuqian/p/10538365.html
https://stor.51cto.com/art/201910/604653.htm
到此这篇关于一文掌握Redis的三种集群方案(小结)的文章就介绍到这了,更多相关Redis 集群内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
发表评论